Quantum Coherence and its Impact on Biomimetic Light-Harvesting

Author:

Laos Alistair J.,Curmi Paul M. G.,Thordarson Pall

Abstract

The survival of all photosynthetic organisms relies on the initial light harvesting step, and thus, after ~3 billion years of evolution energy capture and transfer has become a highly efficient and effective process. Here we examine the latest developments on understanding light harvesting, particularly in systems that exhibit an ultrafast energy transfer mechanism known as quantum coherence. With increasing knowledge of the structural and function parameters that produce quantum coherence in photosynthetic organisms, we can begin to replicate this process through biomimetic systems providing a faster and more efficient approach to harvesting and storing solar power for the worlds energy needs. Importantly, synthetic systems that display signs of quantum coherence have also been created and the first design principles for synthetic systems utilising quantum coherence are beginning to emerge. Recent claims that quantum coherence also plays a key role in ultrafast charge-separation highlights the importance for chemists, biologists, and material scientists to work more closely together to uncover the role of quantum coherence in photosynthesis and solar energy research.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3