Photochemical attributes determine the responses of plant species from different functional groups of ferruginous outcrops when grown in iron mining substrates

Author:

Rios Camilla OliveiraORCID,Pimentel Paulo Antônio,Bicalho Elisa MontezeORCID,Garcia Queila Souza,Pereira Eduardo GusmãoORCID

Abstract

Environments originating from banded iron formations, such as the canga, are important reference ecosystems for the recovery of degraded areas by mining. The objective of this work was to evaluate if the relationship between morphofunctional and photosynthetic attributes of native canga species from different functional group results in distinct responses when grown in iron mining tailings substrate. The experiment was carried out with species belonging to different functional groups: a widespread semi-deciduous tree-shrub, Myrcia splendens; an endemic deciduous shrub, Jacaranda caroba; and a nitrogen-fixing herbaceous species, Periandra mediterranea. The species were grown in two conditions, reference soil and iron ore tailing. Despite belonging to different functional groups when grown in tailings, the morphofunctional attributes presented similar responses between species. M. splendens was the species most affected by the conditions imposed by the iron ore mining tailings, with decreased light-use efficiency and electron transport. P. mediterranea had satisfactory growth and maintenance of photosynthetic attributes. J. caroba growing in the tailings increased the effective quantum yield of PSII. The photochemical and growth assessments were able to better explain the adaptive strategies developed by the species, guaranteeing a greater chance of success during the rehabilitation of mining substrates.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3