Author:
Ballard Ross A.,Peck David M.
Abstract
Messina (Melilotus siculus) is a new annual pasture legume with better combined waterlogging and salt tolerance than other annual legumes. Messina cv. Neptune and a new salt-tolerant rhizobial symbiont (Sinorhizobium medicae SRDI-554) were made available to Australian growers in 2017. Messina is related to the annual medics (Medicago spp.) that are nodulated by the same genus of rhizobia and regarded as sensitive to soil acidity. Because some saltland soils are acidic, it is important to understand the sensitivity of messina to soil acidity in order to avoid failures during early adoption.
Acidity tolerance of the messina–Sinorhizobium symbiosis was investigated in a hydroponic experiment (inoculation with SRDI-554, or the salt-intolerant strain WSM-1115 recommended for medics), and in three acidic soils (pHCa 4.3–5.5) (inoculation with SRDI-554 ± lime pelleting of seed), in the greenhouse.
In the hydroponic experiment, the percentage of messina plants (with SRDI-554) that formed nodules declined at pH levels between 5.7 (43%) and 5.5 (4%). Strain SRDI-554 was slightly more sensitive to acidity than strain WSM-1115. In the acidic soils, more plants formed nodules than in the hydroponic experiment at similar pH levels; however, without lime pelleting, nodule number was inadequate at soil pHCa <5.5. Addition of lime to seed was beneficial to messina nodulation. Nodule number per plant increased from 4.0 to 9.6 with the addition of lime.
The messina–Sinorhizobium symbiosis was confirmed as sensitive to low pH. At pHCa 5.5, which is the level recommended as the lower limit for growing messina, nodule number was constrained in both hydroponics and soil. The risk of suboptimal nodulation would be reduced if the recommended lower soil pH limit for growing messina is increased to pHCa 5.8, in line with most annual medics. Efforts to improve the acidity tolerance of the messina symbiosis would be best focused on the rhizobial symbiont, rather than the plant.
Subject
Plant Science,Agronomy and Crop Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献