Kinetics of ammonium and nitrate uptake by eucalypt roots and associated proton fluxes measured using ion selective microelectrodes

Author:

Garnett Trevor P.,Shabala Sergey N.,Smethurst Philip J.,Newman Ian A.

Abstract

Ion-selective microelectrodes were used non-invasively to measure the concentration dependence of NH4+ and NO3– fluxes around the roots of intact solution-cultured Eucalyptus nitens (Deane & Maiden) Maiden. In addition, NH4+ and H+ fluxes were measured simultaneously at a range of NH4+ concentrations, and NO3– and H+ fluxes were measured simultaneously at a range of NO3– concentrations. Nitrogen concentrations ranged from 10–250 μM, i.e. in the range corresponding to the high affinity transport system (HATS). Both NH4+ and NO3– fluxes exhibited saturating Michaelis–Menten-style kinetics. The Km was 16 μM for NH4+ and 18 μM for NO3–. Values of Vmax were 53 nmol m–2 s–1 for NH4+ and 37 nmol m–2 s–1 for NO3–. Proton fluxes were highly correlated with NH4+ and NO3– fluxes, but the relationships were different. Proton efflux increased with increasing NH4+ concentration and mirrored the changing NH4+ fluxes. The ratio between NH4+ and H+ fluxes was 1 : –1.6. Proton influx was evident with initial exposure to NO3–, with the flux stoichiometry for NO3– : H+ being 1 : 1.4. Subsequent increases in NO3– concentration caused a gradual increase in H+ efflux such that the flux stoichiometry for NO3– : H+ became 1 : –0.8. The presence of 100 μM NH4+ greatly reduced NO3– fluxes and caused a large and constant H+ efflux. These results are evidence that E. nitens has a preference for NH4+ as a source of N, and that the fluxes of NH4+ and NO3– are quantitatively linked to H+ flux.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3