Emission of nitrogen oxides and ammonia from varying rates of applied synthetic urine and correlations with soil chemistry

Author:

Clough T. J.,Sherlock R. R.,Mautner M. N.,Milligan D. B.,Wilson P. F.,Freeman C. G.,McEwan M. J.

Abstract

Synthetic urine was applied at 5 rates, from 0 to 1000 kg synthetic urine-N/ha, to a pasture soil under controlled laboratory conditions. Gaseous emissions of NOx and NH3 were monitored for up to 21 days following application using selected ion flow tube mass spectrometry with N2O measured using electron-capture gas chromatography. During this period soil replicates were destructively sampled to measure changes in soil pH and inorganic-N concentrations. Comparisons were made between measured soil variables, calculated soil concentrations of NH3(g), HNO2, and the measured gas fluxes. At N rates up to 500 kg N/ha, inorganic-N concentrations increased as nitrification progressed over time. With the exception of the 1000 kg N/ha treatment, NO production followed the pattern of increasing nitrification, reaching a maximum of 905 ng NO-N/cm2.h in the 500 kg N/ha treatment 14 days after synthetic urine application. At this time the NO flux was associated best with soil pH, NH4+, and NO2– levels. Over 21 days the maximum cumulative loss as NO-N and N2O-N occurred under the 100 kg N/ha urine treatment, with 6.6 and 6.4% of N applied lost as gas, respectively. NO2 gas fluxes paralleled the NO emissions but were an order of magnitude smaller. Nitrification was inhibited in the 1000 kg N/ha treatment due to the sustained high ammoniacal-N and pH conditions present. These conditions prolonged the NH3 volatilisation from this treatment. NH3 volatilisation, as determined by selected ion flow tube-mass spectrometry, was linearly related to calculated soil NH3 gas concentrations up to 500 kg N/ha on Day 1.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3