Microwave-Assisted Chemistry: a Rapid and Sustainable Route to Synthesis of Organics and Nanomaterials

Author:

Polshettiwar Vivek,Nadagouda Mallikarjuna N.,Varma Rajender S.

Abstract

The use of emerging microwave (MW)-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. The present review summarizes recent developments in MW-assisted synthesis, name reactions and organic transformations, and rapid generation of nanoparticles with uniform size distribution. Greener protocols have been developed for the synthesis of various bio-active heterocycles, namely 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,3-dioxanes, pyrazoles, hydrazones and 3,4-dihydropyrimidin-2(1H)-ones, which proceed under the influence of microwaves and using eco-friendly conditions. These high-yielding methods were catalyzed efficiently by solid-supported Nafion NR50 under solvent-free conditions and polystyrene sulfonic acid in aqueous media. The eco-friendly nucleophilic substitution chemistry in water to generate cyclic amines via double N-alkylation of primary amines or hydrazines by dihalides or tosylates enables the greener synthesis of a range of pharmaceutically active heterocycles. Similarly, efficient MW synthesis of various azides, thiocyanates, and sulfones in aqueous medium occurs wherein nucleophilic substitution reaction takes place in the absence of a phase-transfer catalyst. Bulk and shape-controlled synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using α-d-glucose, sucrose, and maltose is described. MW method also accomplishes the cross-linking reaction of poly(vinyl alcohol) with metallic systems such as Pt, Cu, and In; bimetallic systems, namely Pt–In, Ag–Pt, Pt–Fe, Cu–Pd, Pt–Pd, and Pd–Fe; and single-walled nanotubes, multi-walled nanotubes, and buckminsterfullerenes (C-60). The strategy is extended to the formation of biodegradable carboxymethyl cellulose (CMC) composite films with noble nanometals; such metal decoration and alignment of carbon nanotubes in CMC is possible using a MW approach that also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly(ethylene glycol).

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3