'Plasma Emission' without Langmuir Waves

Author:

Melrose DB

Abstract

Recent observations have confirmed that the level of Langmuir waves associated with type III streams of electrons in the interplanetary medium is usually too low to account for the observed radio emission by the accepted 'plasma emission' processes, and it has been suggested that emission mechanisms which do not require Langmuir waves should be explored. Four such mechanisms are discussed. One is a parametric instability leading directly to second-harmonic emission; it is found inapplicable under conditions of interest here. The other three processes all involve ion-sound turbulence. One which is known in a different context is turbulent bremsstrahlung. Turbulent bremsstrahlung of transverse waves is found to compare unfavourably with the other two processes, which are scattering of an ion-sound (s) wave into a transverse (t) wave and double emission of both waves simultaneously. These latter two processes are related by a crossing symmetry and are treated together with the following results: (i) The processes become greatly enhanced when the beat (w�w', k�k') between the t wave and the s wave nearly satisfies the dispersion relation for Langmuir (I) waves. (ii) A bump-in-the-tail instability (due to electrons with dF(v)/dv > 0) can cause the transverse waves to grow due to double emission; this growth has been likened to a freeelectron maser. (iii) The familiar bump-in-the-tail instability for resonant I waves can be suppressed by the ion-sound waves, and the double-emission instability then takes over with about the same growth rate as the original I-wave instability. (iv) The conditions for the double-emission instability to occur are probably satisfied at least some of the time for type III streams. It is concluded that although 'plasma emission' without Langmuir waves may be possible in principle, it is unlikely to play any role in type III bursts.

Publisher

CSIRO Publishing

Subject

General Physics and Astronomy

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of Plasma Emission in Magnetized Plasmas;The Astrophysical Journal;2022-01-01

2. Index;Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes;2019-10-31

3. One-Dimensional Normalized Equations;Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes;2019-10-31

4. On Renormalized Kinetic Turbulence Theory;Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes;2019-10-31

5. On Higher-Order Perturbative Expansion;Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes;2019-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3