Tolerance to ion toxicities enhances wheat grain yield in acid soils prone to drought and transient waterlogging

Author:

Khabaz-Saberi Hossein,Barker Susan J.,Rengel Zed

Abstract

The ion toxicities of aluminium (Al), manganese (Mn) and iron (Fe) induced in transiently waterlogged acid soils decrease root and shoot growth and grain yield more in intolerant than tolerant wheat genotypes. Whether these tolerances might also enhance grain yield in moisture-limited acid soils is not known. Wheat genotypes contrasting in ion toxicity tolerances (differing 6-fold for Al, 14-fold for Mn and 2.7-fold for Fe tolerance, quantified via relative root length (Al) or relative root dry weight (Mn and Fe)), but otherwise having a similar yield potential and maturity, were evaluated in plots with and without lime in multi-location field experiments (including two dry and one non-moisture-limiting site) in the Western Australian wheatbelt. Liming reduced surface soil acidity, and increased grain yield more in ion-toxicity tolerant than intolerant genotypes. The combined adverse effect of soil acidity and drought reduced relative grain yield less in Al- and Mn-tolerant genotypes (68%, 2347 kg ha–1) than intolerant genotypes (76%, 2861 kg ha–1) in drought-stressed environments. It appears that a deep root system to allow uptake of water from deep horizons in acidic soils with a dry surface layer is contingent on tolerance to multiple ion toxicities.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3