Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield

Author:

Chapman S. C.,Cooper M.,Butler D. G.,Henzell R. G.

Abstract

Past sorghum hybrid trials in north-eastern Australia have detected substantial genotype by environment (G×E) interactions for yield in sampling a variable target population of environments (TPE) that is affected by spatial and seasonal differences in crop water supply. Three datasets, comprising yields of commercial and final stage experimental hybrids and covering 9–17 years (Y) and up to 30 locations (L), were analysed to quantify variance components for trial error, genotypic (σ2g), and G×E (σ2gl, σ;2gy, and σ2gly) interaction effects. Whereas trial means varied 2–3-fold across seasons, a greater range was estimated for variance components of trial error (range of 0.05–0.5), G (0–>0.3), and G×L interaction (0.05–>1.0). There was substantial seasonal variation in the ratio of σ2g to (σ2g +σ2gl), and in two datasets, 73% of the seasonal σ2gl was due to poor genetic correlations among locations. This implies that any given set of hybrids in a random set of locations would be ranked differently from season to season. Analysis of locations over years detected 90% of the total G×E interaction as G×L×Y, rather than G×L or G×Y, although this was reduced by accounting for genotype maturity. To achieve repeatabilities of >80%, trials would need to be conducted over at least 5 years and 20 locations per year. The variable and unpredictable nature of much of the G×E interaction in the region implies that broad adaptation to different water regimes is required, unless prior knowledge of the seasonal weather can be used to choose ‘narrowly adapted’ cultivars. With current approaches, a large sample of environments is needed to identify such hybrids, and testing across locations and years is equally important. Alternative breeding strategies based on classifying environment types are discussed.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3