Experimental study of the burning characteristics of dead forest fuels

Author:

Sahila A.ORCID,Boutchiche H.,Viegas D. X.,Reis L.,Pinto C.,Zekri N.

Abstract

Background A deeper physical understanding of flame behaviour is necessary to make more reliable predictions about forest fire dynamics. Aims To study the container size effect on the combustion characteristics of herbaceous fuels. Methods Dead samples were put in cylindrical containers of different sizes, and were ignited at the lowest circumference of the basket in the absence of wind. Key results In the growth phase, there is an anomalously fast relaxation of the fuel mass accompanied by a super-diffusion of the emitted gas species, whereas in the decay phase, there is a stretched exponential relaxation and the gas species sub-diffuse through the porous fuel. The crossover between these two anomalous processes occurs when the flame is fully developed. Thomas’s correlation between flame height and fuel bed size, and the two-third power law dependence of the normalised flame height on the Froude number, fit the experimental data well. The flame height variation with burning rate exhibits a hysteresis cycle, implying the existence of memory effects on flame formation. Conclusions The observed relaxation regimes and hysteresis cycle seem to drive fire dynamics and behaviour. Implications Further investigation of the influence of the fuel geometry and porosity on these properties is necessary.

Funder

Portuguese National Science Foundation and European Union’s Horizon 2020 research and innovation programme

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3