Author:
Diacomanolis Violet,Noller Barry N.,Taga Raijeli,Harris Hugh H.,Aitken Jade B.,Ng Jack C.
Abstract
Environmental context X-ray absorption near-edge spectroscopy (XANES) was applied to give arsenic chemical forms directly in the solid phase of mine wastes from two mine sites, including fluvial dispersion. The arsenic speciation data explained the variation of in vitro bioaccessibility and in vivo bioavailability (rat uptake) data of the mine wastes. The As speciation from XANES fitting supported the hypothesis that when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents is significantly lower. Abstract X-ray absorption near-edge spectroscopy (XANES) was used for arsenic speciation in mine processing and waste samples from two mines in northern Australia. XANES fitting of model compound spectra to samples was used, in combination with in vitro bioaccessibility data for the pure compounds, to predict bioaccessibility of each mine waste sample (Pearson’s correlation R2=0.756, n=51). The XANES fitting data for a smaller set of the samples (n=12) were compared with in vivo bioavailability and in vitro bioaccessibility data. The bioavailability of arsenic (As) in the mine wastes, which is dependent, at least in part, on its oxidation state, was found to be <14% (0.9–13.5%) for arsenite (AsIII) and <17% (3.5–16.4) for arsenate (AsV). Arsenic bioaccessibility in the mine wastes ranged from 8–36% in the stomach to 1–16% in the intestinal phase, indicating that a small portion of the total As concentration in the mine waste was available for absorption. A significant correlation showed that bioaccessibility can be used as a predictor of bioavailability. The XANES results support that bioavailability and bioaccessibility results were very similar and show a strong association with the presence of ferric arsenate and As sulfides. It can be concluded that, when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents exposed to the mine waste was significantly lower than that estimated based on a 100% bioavailability often employed for the risk assessment.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献