Exogenous application of 5-aminolevulinic acid improves low-temperature stress tolerance of maize seedlings

Author:

Wang Yi,Li Jing,Gu Wanrong,Zhang Qian,Tian Lixin,Guo Shi,Wei Shi

Abstract

The important plant growth regulator 5-aminolevulinic acid (ALA) could promote low-temperature stress tolerance of many plants; however, the underlying mechanisms remain to be elucidated. We investigated the effects of exogenously applied ALA on seedling morphology, antioxidant enzyme activity and photosynthetic capacity of maize (Zea mays L.) seedlings under low-temperature stress. Two cultivars, low-temperature-sensitive cv. Suiyu 13 (SY13) and low-temperature-tolerant cv. Zhengdan 958 (ZD958), were subjected to four treatments: low-temperature without ALA treatment, low-temperature after ALA treatment, normal temperature without ALA treatment, and normal temperature after ALA treatment. Plant morphological growth, proline content, antioxidant enzyme activity and photosynthetic capacity were determined. ALA treatment significantly decreased the inhibitory effects of low-temperature stress on seedling dry weight and increased proline accumulation under low temperatures in ZD958. Pre-application of ALA significantly improved superoxide dismutase and catalase activities in SY13 under low-temperature stress. Furthermore, treating maize seedlings with ALA resulted in significant enhancement of ribulose-1,5-bisphosphate (RuBP) carboxylase activity under low-temperature stress in both cultivars. Pre-treatment with ALA relieved the damage caused by low-temperature stress to maize seedlings, particularly in the low-temperature-sensitive cultivar. Therefore, ALA at appropriate concentrations may be used to prevent reductions in maize crop yield due to low-temperature stress.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3