Abstract
The covariant response tensor for a relativistic electron gas is calculated in two ways. One involves introducing a four-dimensional generalization of the electron-positron occupation number, and the other is a covariant generalization of a method due to Harris. The longitudinal and transverse parts are. evaluated for an isotropic electron gas in terms of three plasma dispersion functions, and the contributions from Landau damping and pair creation to the dispersion curve are identified separately. The long-wavelength limit and the non-quantum limit, with first quantum corrections, are found. The plasma dispersion functions are evaluated explicitly for a completely degenerate relativistic electron gas, and a detailed form due to Jancovici is reproduced.
Subject
General Physics and Astronomy
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献