Plant adaptation to climate change—opportunities and priorities in breeding

Author:

Chapman Scott C.,Chakraborty Sukumar,Dreccer M. Fernanda,Howden S. Mark

Abstract

Climate change in Australia is expected to influence crop growing conditions through direct increases in elevated carbon dioxide (CO2) and average temperature, and through increases in the variability of climate, with potential to increase the occurrence of abiotic stresses such as heat, drought, waterlogging, and salinity. Associated effects of climate change and higher CO2 concentrations include impacts on the water-use efficiency of dryland and irrigated crop production, and potential effects on biosecurity, production, and quality of product via impacts on endemic and introduced pests and diseases, and tolerance to these challenges. Direct adaptation to these changes can occur through changes in crop, farm, and value-chain management and via economically driven, geographic shifts where different production systems operate. Within specific crops, a longer term adaptation is the breeding of new varieties that have an improved performance in ‘future’ growing conditions compared with existing varieties. In crops, breeding is an appropriate adaptation response where it complements management changes, or when the required management changes are too expensive or impractical. Breeding requires the assessment of genetic diversity for adaptation, and the selection and recombining of genetic resources into new varieties for production systems for projected future climate and atmospheric conditions. As in the past, an essential priority entering into a ‘climate-changed’ era will be breeding for resistance or tolerance to the effects of existing and new pests and diseases. Hence, research on the potential incidence and intensity of biotic stresses, and the opportunities for breeding solutions, is essential to prioritise investment, as the consequences could be catastrophic. The values of breeding activities to adapt to the five major abiotic effects of climate change (heat, drought, waterlogging, salinity, and elevated CO2) are more difficult to rank, and vary with species and production area, with impacts on both yield and quality of product. Although there is a high likelihood of future increases in atmospheric CO2 concentrations and temperatures across Australia, there is uncertainty about the direction and magnitude of rainfall change, particularly in the northern farming regions. Consequently, the clearest opportunities for ‘in-situ’ genetic gains for abiotic stresses are in developing better adaptation to higher temperatures (e.g. control of phenological stage durations, and tolerance to stress) and, for C3 species, in exploiting the (relatively small) fertilisation effects of elevated CO2. For most cultivated plant species, it remains to be demonstrated how much genetic variation exists for these traits and what value can be delivered via commercial varieties. Biotechnology-based breeding technologies (marker-assisted breeding and genetic modification) will be essential to accelerate genetic gain, but their application requires additional investment in the understanding, genetic characterisation, and phenotyping of complex adaptive traits for climate-change conditions.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 191 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3