Changes in seed size and oil accumulation in Brassica napus L. by manipulating the source - sink ratio and excluding light from the developing siliques

Author:

Fortescue Jeanie A.,Turner David W.

Abstract

Most of the oil in canola seed is contained in the cotyledons and so an increase in cotyledon size may lead to increased oil concentration in the whole seed, provided compensatory changes in non-oil bearing tissues are minimised. In addition, in in vitro studies, light has been shown to affect fatty acid synthesis. In two glasshouse experiments, we manipulated seed size in 3 cultivars of canola by increasing the source–sink ratio through removal of lateral inflorescences, restricting the plants to flowering on the main axis. We manipulated the ability of the growing seed to use light for the synthesis of fatty acids for oil by shading the siliques at different stages of seed development. The growth of ovules and embryos in the first experiment was assessed by evaluating changes in the projected area of the organs during growth and the final seed weight. We examined the pattern of organ development in the embryo by fitting appropriate curves and comparing the effect of the treatments on the coefficients. Pruning axillary branches increased seed weight by 14–43% but did not change the pattern of development of the cotyledons or radicle in the seed. Embryo growth over time was sigmoid in form with the most rapid growth occurring 12–27 days after flowering (daf). The removal of axillary branches and inflorescences reduced oil concentration in the larger seeds by 2.6–4.5% but only in one experiment. Light was excluded from the siliques from 2, 10, or 30 daf or not at all. Excluding light from 2 or 10 daf reduced ovule weight at maturity by 63% and excluding light from 30 daf reduced ovule weight by 20%. Excluding light reduced the number of seeds per silique by up to 90%, especially when excluded from 2 daf. Excluding light slightly reduced oil concentration, suggesting that, provided maternal substrates are available to the seed, it can use these to obtain energy for oil synthesis, even in the dark. We conclude that manipulation of the canopy of canola to change the source–sink ratio or the distribution of light within the canopy may have large effects on seed size, but little effect on the accumulation of oil in the seeds. This conclusion assumes that the relationships found in our glasshouse experiments apply in the field.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3