Relationships between carbon isotope discrimination, water use efficiency and transpiration efficiency for dryland wheat

Author:

Condon AG,Richards RA,Farquhar GD

Abstract

Carbon isotope discrimination (-) has been shown to be negatively correlated with water use efficiency for wheat cultivars grown in the glasshouse. In the field this negative correlation has been confirmed for peanut but it has yet to be confirmed for wheat. Indeed, several field studies on wheat have shown positive (rather than negative) relationships between dry matter production and -. The aim of this study was to determine the relationship between - and water use efficiency for wheat grown in a dryland environment characterized by winterlspring-dominant rainfall and terminal drought. Eight genotypes chosen to give a range in - of c. 2.0x10-3 were grown on a red earth at Moombooldool in the Riverina region of New South Wales. Water use and above-ground dry matter (DM) were measured over the course of the season. Water use was partitioned into transpiration and soil evaporation and values of crop water use efficiency (WET) and transpiration efficiency ( WT) calculated. To account for the effect on WT of seasonal changes in the vapour pressure deficit of the air (D), crop coefficients (k) were derived by multiplying WT by the transpiration-weighted average daytime value of D for each genotype. During the preanthesis period, when there was little limitation of soil water supply on growth, there was a positive relationship between DM and -, as observed previously. The relationship between WET and - also had a positive (though non-significant) trend, but the relationship between k and - was negative, i.e. once the effects of variation in the ratio T/ET and seasonal changes in D were accounted for, the negative correlation between water use efficiency and - re-emerged. This apparent conflict between WET and k arose because genotypes with high - values developed their leaf area faster, with two important consequences. First, high - genotypes transpired more of their water supply during the winter when D was low and the exchange of water for CO2 more efficient. Second, transpiration made up a greater proportion of total water use by high - genotypes. The relationship between water use efficiency and - was further complicated as the crops depleted the soil water store after anthesis. During this period DM production tended to be greater in low - genotypes that had conserved soil water in the preanthesis period. However, DM production also remained high for two high - genotypes. The cause of this variation in post-anthesis growth among high - genotypes was not established.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3