Post-wildfire moss colonisation and soil functional enhancement in forests of the southwestern USA

Author:

Grover Henry S.ORCID,Bowker Matthew A.,Fulé Peter Z.,Doherty Kyle D.,Sieg Carolyn H.,Antoninka Anita J.

Abstract

Fire mosses, including Ceratodon purpureus, Funaria hygrometrica and Bryum argenteum, can achieve high cover within months to years after high-severity fire, but do so heterogeneously across space and time. We conducted a survey of moss cover and erosion-related functions after 10 wildfires in Pinus ponderosa and mixed-conifer forests of the southwestern USA. We sampled 65 plots in high-severity patches, stratifying by elevation and insolation over each fire. Using three landscape-scale predictor variables and one temporal predictor, we explained 37% of the variance in fire moss cover using a random forest model. The predictors in order of importance were: equinox insolation (sunlight/day), pre-fire vegetation type, pre-fire soil organic carbon and time since fire. Within each plot we examined differences between bare and moss-covered soil surface microsites and found moss-covered microsites had a mean increase of 55% water infiltration, 106% shear strength, 162% compressive strength and 195% aggregate stability. We tested a suite of nutrients, finding 35% less manganese in the moss-covered soil. This research demonstrated that post-fire colonisation by moss is predictable and that colonisation improves soil surface erosion resistance and hydrological function, with implications for managing severely burned landscapes.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3