Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia

Author:

Maher William A.,Foster Simon D.,Taylor Anne M.,Krikowa Frank,Duncan Elliot G.,Chariton Anthony A.

Abstract

Environmental context Arsenic concentrations and species were determined in seagrass ecosystems where the food web was established using carbon and nitrogen isotopes. There was a clear increase in the proportion of arsenobetaine in tissues of higher trophic level organisms, which is attributed to an increasing arsenobetaine content of the diet and the more efficient assimilation and retention of arsenobetaine over other arsenic species. The results provide an explanation for the prominence of arsenobetaine in higher marine animals. Abstract Arsenic concentrations and species were compared in biota from two Zostera capricorni ecosystems. Mean arsenic concentrations were not significantly different for non‐vegetative sediment, rhizosphere sediment, Z. capricorni blades, roots, rhizomes, epiphytes, amphipods, polychaetes, molluscs, crustaceans and fish, but were significantly different in detritus. Sediments and plant tissues contained mostly inorganic arsenic and PO4–arsenoriboside. Detritus contained mostly PO4–arsenoriboside. Fish tissues contained predominately arsenobetaine. Other animals had lower proportions of arsenobetaine and variable quantities of minor arsenic species. Bioconcentration but not biomagnification of arsenic is occurring with no evidence of arsenic hyper accumulation. The proportion of arsenobetaine increases through the food web and is attributed to a shift from a mixed diet at lower trophic levels to animals containing mostly arsenobetaine at higher trophic levels and the more efficient retention of arsenobetaine, compared to other arsenic species.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3