Factors influencing the soil-test calibration for Colwell P and wheat under winter-dominant rainfall

Author:

Conyers MarkORCID,Bell RichardORCID,Bell Michael

Abstract

Critical ranges for soil tests are based on results that inevitably involve some broad variance around the fitted relationship. Some of the variation is related to field-based factors affecting crop response to nutrients in the soil and some to the efficiency of the soil-test extractant itself. Most attempts to improve soil tests focus on the extractant, whereas here, we explore the variation that could be accounted for by field-based factors in the soil-test calibration relationship between Colwell phosphorus (P) and wheat yield, using the Australian Better Fertiliser Decisions for Crops database—the biggest dataset available for this relationship. Calibrations developed from this dataset have been criticised, and so we aimed to explore factors accounting for more of the variation in the relationships for the dryland, winter-dominant rainfall region of southern New South Wales. As reported previously, soil type was shown to influence the critical range and r-value for the Colwell P soil-test calibration for P responses by wheat. We also identified a tendency for dry conditions, at sowing or during the season, to lower relative yields for a given soil-test value, indicating increased reliance on fertiliser P over soil P. A similar trend was evident for later sowing date, again suggesting an increased probability of crop P requirements being met from the fertiliser P. However, additional records need to be generated to establish definitively that early sowing or subsurface P reserves minimise response to fertiliser P. In general, factors that influence crop access to soil P will have an impact on response to fertiliser P. Although this analysis shows that it is possible to ‘tighten’ the response curve for Colwell P and wheat by restricting the data for a given soil type to ideal management and seasonal conditions, the ‘outliers’ that are excluded frequently reflect an important subset of environmental conditions encountered by wheat crops in dryland agriculture.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3