Contribution of boars to reproductive performance and paternity after homospermic and heterospermic artificial insemination

Author:

Ferreira C. E. R.,Sávio D. B.,Guarise A. C.,Flach M. J.,Gastal G. D. A.,Gonçalves A. O.,Dellagostin O. A.,Alonso R. V.,Bianchi I.,Corcini C. D.,Lucia T.

Abstract

Heterospermic AI is commonly used in swine despite preventing precise evaluation of individual boar fertility. The present study compared the contribution of four boars (A, B, C and D) for reproductive performance and for paternity using homospermic and heterospermic (AB, AC, AD, BC, BD and CD) AI (n = 204 for homospermic AI; n = 307 for heterospermic AI). Blood samples from the four boars, from all sows inseminated with heterospermic doses and from the umbilical cords of their piglets, as well as tissue smears from mummified fetuses, were genotyped using single nucleotide polymorphisms (SNPs). Differences among boars were detected for the in vitro oocyte penetration rate and for the number of spermatozoa per oocyte (P < 0.05), but not for sperm motility, mitochondrial functionality and integrity of the membrane, acrosome and DNA (P > 0.05). Homospermic and heterospermic AI resulted in similar (P > 0.05) farrowing rates (90.5% and 89.9%, respectively) and total litter size (12.4 ± 0.4 and 12.7 ± 0.7, respectively). Farrowing rate was lower for Boar B than for Boar C (P < 0.05), but no other differences in reproductive performance among boars were observed with homospermic AI. The SNPs determined the paternity of 94.2% of the piglets sired by heterospermic AI. In the AC pool, paternity contribution per boar was similar (P > 0.05), but differences between boars occurred in all other pools (P < 0.05). Boar D achieved the greatest paternity contribution in all pools and parity categories (nearly 60%), whereas Boar B sired the fewest piglets (at most 40%). Reproductive performance was similar with homospermic and heterospermic AI, but differences in performance among boars undetected with homospermic AI were only evident after genotyping the piglets sired through heterospermic AI.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3