Effective adsorptive removal of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine by pseudographitic carbon: kinetics, equilibrium and thermodynamics

Author:

Choi Jong-Soo,Koduru Janardhan Reddy,Lingamdinne Lakshmi Prasanna,Yang Jae-Kyu,Chang Yoon-Young

Abstract

Environmental contextExplosive organic compounds such as 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are major constituents of ammunition materials. These compounds are of environmental concern because they can have a significant impact on ecosystems and humans. Through investigations of adsorption kinetics, isotherms and thermodynamics, we demonstrate the suitability of pseudographitic carbon for removing TNT and RDX from groundwater, and additionally confirm the viability of the use of pseudographitic carbon through comparison with other adsorbents. Abstract2,4,6-Trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) – common explosives in military munitions – can easily enter groundwater supplies and have an adverse impact on human health. There is great concern about the need to remove these explosives from groundwater, and this study presents pseudographitic carbon (PGC) prepared from edible sugar as a material to remove explosives from contaminated groundwater via adsorption. The purity and physicochemical characteristics of the PGC were characterised using advanced spectroscopic techniques. The adsorption mechanism and its efficiency were investigated in terms of the non-linear adsorption kinetics, isotherms and thermodynamics using TNT and RDX adsorption data. The results of the non-linear modelling indicate that TNT and RDX adsorption was determined by rate-limiting monolayer exothermic adsorption on the homogeneous PGC surface. Ionic strength was studied with various ions, and the results indicate that the adsorption of TNT and RDX was significantly influenced by divalent cations and the carbonate anion. The results of desorption and re-use tests indicate that acetone and acetonitrile are the best desorbing agents. The PGC can be recycled and re-used for up to 3 cycles, with insignificant loss in adsorption efficiency. Finally, the PGC was applied to real spiked groundwater to evaluate its applicability in the field in removing TNT and RDX. The overall results indicate that PGC is a cost-effective and efficient adsorbent that effectively removes the organic explosives from groundwater, thereby reducing risk to humans and the aqueous environment.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3