Nitrogen deposition changes the distribution of key plant species in the meadow steppe in Hulunbeier, China

Author:

Xuan Wang,Ting Wang Xin,Zhu Liang Cun,Mei Niu Yong

Abstract

Improved understanding of how nutrient levels affect the distribution of plants can provide important insights into the potential impacts of increasing global nitrogen (N) deposition. We used point pattern analyses to examine the impact of nutrient addition on heterogeneity in the spatial distribution of the three main plant species of the meadow steppe community of Hulunbeier, Inner Mongolia: Leymus chinensis (Trin.) Tzvel (aka Aneurotepidimu chinense), a rhizamotous grass; Stipa baicalensis Rasher, a bunch grass; and Artemisia tanacetifolia Linn, a rhizamotous forb. The six treatments tested added nitrogen N in three different concentrations, N with phosphorus (P), P alone and a Control. Although the three plant species were randomly distributed at the start of the experiment in 2011, the spatial distribution of some species in some treatments had changed at the end of 3 years of nutrient addition. There was a significant increase in aggregation of L. chinensis at fine scales of analysis from application of N and P in tandem. However, S. baicalensis and A. tanacetifolia distributions remained random under all treatments. Positive associations of L. chinensis with S. baicalensis and with A. tanacetifolia were apparent at the lowest concentration of added N, 2.5 g N m–2 year–1, which represented an approximate doubling of global N deposition. These associations, which represent clustering among individuals of these species were also apparent where only P was applied. Negative associations, representing dispersion, were prevalent with higher N concentrations. The results indicate that increases in global N deposition up to about double current levels may have a positive influence on meadow steppe communities by increasing the niche overlap of different species. However, increases beyond that level may trigger substantial ecological change through increased competition for other, more limited, environmental resources, and disassociation between plants of the different dominant species. Our findings suggest that studies of the spatial patterning of plant communities can contribute to understanding the potential impacts of climate change.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3