Synthesis and Ring Cyclization - Expansion - Contraction Reactions of Some New 2,2-Disubstituted Indan-1,3-diones and Related Compounds

Author:

Roxburgh Craig J.,Banting Lee

Abstract

We have found that the hydrochloride of 2-phenyl-2-[2-(2-piperidyl)ethyl]-4,5,6,7-tetrahydroindan-1,3-dione 1 possesses marked analgesic activity (100% inhibition referenced to codeine) and report, as part of an extensive synthetic program, the synthesis of 38 new and structurally related compounds. Selective catalytic hydrogenation of the pyridine ring of 2-phenyl-2-[2-(2-pyridyl)ethyl]-indan-1,3-dione 2 yields the nine-membered nitrogen-containing heterocycle 6 by a novel ring cyclization–expansion reaction. The structural and functional group parameters required for this novel ring-expansion reaction have been extensively and thoroughly investigated through the synthesis of a series of structurally related compounds; principally by modification, substitution, and replacement of the various functionality contained within 2. In addition, we report the synthesis of a series of new 2-methyl-2-(ω-N-phthalimidoalkyl)-indan-1,3-diones 41, 45, and 53, two of which, like the parent 2-phenyl substituted indan-1,3-dione 2, also undergo a novel ring cyclization–expansion reaction to yield eight- and nine-membered nitrogen-containing rings. However, in these cases, further transannular reactions occur to produce the new 5,5- and 5,6-ring-fused nitrogen-containing heterocycles 44, 48 and 51, 52. Hydrazinolysis of the third, 2-methyl-2-(4-N-phthalimidobutyl)-indan-1,3-dione yields the new azepine-containing ring structure 56 by direct cyclization. Furthermore, some interesting and unexpected chemical properties of the final compounds, which include selective and non-selective pyridine-ring hydrogenations and a few unexpected side reactions, are described.

Publisher

CSIRO Publishing

Subject

General Chemistry

Reference24 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3