Parthenogenetic activation of rat oocytes and their development (in vitro)

Author:

Roh S.,Malakooti N.,Morrison J. R.,Trounson A. O.,Du Z. T.

Abstract

The present study was performed to determine suitable methods for parthenogenetic activation and subsequent development of rat oocytes in vitro. In the first series of experiments, the ability of electrical pulses, strontium, ethanol and ionomycin to activate Sprague-Dawley (SD) rat oocytes was examined. The synergistic effect of strontium and cycloheximide or puromycin was also examined in the second series of experiments. In the third series of experiments, the development of F1 hybrid (SD × Dark Agouti) parthenotes activated with different concentrations of strontium (10–0.08 mM) was compared with that of SD parthenotes. The effect of the timing of activation (10 min and 2, 4 and 6 h after cervical dislocation) was also assessed in a fourth series of experiments. The oocytes activated by strontium showed higher pronuclear formation and cleavage rates than those in the other groups (P < 0.05). Higher blastocyst development was obtained from parthenotes activated by strontium and strontium–cycloheximide compared with the strontium–puromycin group (P < 0.01). However, the total cell number of blastocysts from the strontium–cycloheximide activation group was higher than that of other groups (P < 0.05). With strontium (2.5–10 mM) treatment, 40.9% of blastocysts were obtained from F1 hybrid oocytes, whereas 22.9% were obtained from SD (P < 0.01). The oocytes activated 10 min or 2 h following cervical dislocation showed higher blastocyst development than those of the 4 and 6 h groups (P < 0.01). These results suggest that strontium–cycloheximide produces the highest parthenogenetic activation rate in the rat and that oocytes must be activated by 2 h after cervical dislocation.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3