Author:
Krause G. Heinrich,Winter Klaus,Krause Barbara,Virgo Aurelio
Abstract
Heat tolerance of plants exhibiting crassulacean acid metabolism (CAM) was determined by exposing leaf sections to a range of temperatures both in the dark and the light, followed by measuring chlorophyll a fluorescence (Fv/Fm and F0) and assessing visible tissue damage. Three CAM species, Clusia rosea Jacq., Clusia pratensis Seem. and Agave angustifolia Haw., were studied. In acidified tissues sampled at the end of the night and exposed to elevated temperatures in the dark, the temperature that caused a 50% decline of Fv/Fm (T50), was remarkably low (40−43°C in leaves of C. rosea). Conversion of chlorophyll to pheophytin indicated irreversible tissue damage caused by malic acid released from the vacuoles. By contrast, when acidified leaves were illuminated during heat treatments, T50 was up to 50−51°C. In de-acidified samples taken at the end of the light period, T50 reached ∼54°C, irrespective of whether temperature treatments were done in the dark or light. Acclimation of A. angustifolia to elevated daytime temperatures resulted in a rise of T50 from ∼54° to ∼57°C. In the field, high tissue temperatures always occur during sun exposure. Measurements of the heat tolerance of CAM plants that use heat treatments of acidified tissue in the dark do not provide relevant information on heat tolerance in an ecological context. However, in the physiological context, such studies may provide important clues on vacuolar properties during the CAM cycle (i.e. on the temperature relationships of malic acid storage and malic acid release).
Subject
Plant Science,Agronomy and Crop Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献