Sequential indicator simulation and indicator kriging estimation of 3-dimensional soil textures

Author:

He Y.,Chen D.,Li B. G.,Huang Y. F.,Hu K. L.,Li Y.,Willett I. R.

Abstract

The complex distribution characteristics of soil textures at a large or regional scale are difficult to understand with the current state of knowledge and limited soil profile data. In this study, an indicator variogram was used to describe the spatial structural characteristics of soil textures of 139 soil profiles. The profiles were 2 m deep with sampling intervals of 0.05 m, from an area of 15 km2 in the North China Plain. The ratios of nugget-to-sill values (SH) of experimental variograms of the soil profiles in the vertical direction were equal to 0, showing strong spatial auto-correlation. In contrast, SH ratios of 0.48–0.81 in the horizontal direction, with sampling distances of ~300 m, showed weaker spatial auto-correlation. Sequential indicator simulation (SIS) and indicator kriging (IK) methods were then used to simulate and estimate the 3D spatial distribution of soil textures. The outcomes of the 2 methods were evaluated by the reproduction of the histogram and variogram, and by mean absolute error of predictions. Simulated results conducted on dense and sparse datasets showed that when denser sample data are used, complex patterns of soil textures can be captured and simulated realisations can reproduce variograms with reasonable fluctuations. When data are sparse, a general pattern of major soil textures still can be captured, with minor textures being poorly simulated or estimated. The results also showed that when data are sufficient, the reproduction of the histogram and variogram by SIS was significantly better than by the IK method for the predominant texture (clay). However, when data are sparse, there is little difference between the 2 methods.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3