Non-target site mechanism of metribuzin tolerance in induced tolerant mutants of narrow-leafed lupin (Lupinus angustifolius L.)

Author:

Pan Gang,Si Ping,Yu Qin,Tu Jumin,Powles Stephen

Abstract

Narrow-leafed lupin (Lupinus angustifolius L.) is an important grain legume crop in Australia. Metribuzin is an important herbicide used to control weeds in lupin crops. This study investigated metribuzin tolerance mechanism in narrow-leafed lupin by comparing two induced mutants (Tanjil-AZ-33 and Tanjil-AZ-55) of higher metribuzin tolerance with the susceptible wild type. Sequencing of the highly conserved region of the chloroplast psbA gene (target site) revealed that the sequences of the wild type and the mutants were identical and therefore metribuzin tolerance is not target site based. Photosynthetic activity was measured and the leaf photosynthesis of the two tolerant mutants was initially inhibited after metribuzin treatment, but recovered within 2.5 days whereas that of the susceptible plants remained inhibited. The photosynthetic measurements confirmed the target site chloroplast was susceptible and the tolerance mechanism is non-target site based. Investigation with known cytochrome P450 monooxygenase inhibitors (omethoate, malathion and phorate) showed that tolerance could be reversed in both mutants, indicating the tolerance mechanism in two tolerant mutants may involve cytochrome P450 enzymes. Interestingly, the inhibitor tridiphane reversed metribuzin tolerance of only one of the two tolerant mutants, indicating diversity in metribuzin tolerance mechanisms in narrow-leafed lupin. These results signify that further investigation of metribuzin metabolism in these plants is warranted. In conclusion, metribuzin tolerance mechanism in lupin mutants is non-target site based, likely involving P450-mediated metribuzin metabolism.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3