Summer fallow weed control and residue management impacts on winter crop yield though soil water and N accumulation in a winter-dominant, low rainfall region of southern Australia

Author:

Hunt J. R.,Browne C.,McBeath T. M.,Verburg K.,Craig S.,Whitbread A. M.

Abstract

The majority of rain used by winter grain crops in the Mallee region of Victoria, Australia, falls during the cooler months of the year (April–October). However, rain falling during the summer fallow period (November–March) and stored as soil moisture contributes to grain yield. Strategies to better capture and store summer fallow rain include (i) retention of crop residues on the soil surface to improve water infiltration and evaporation; and (ii) chemical or mechanical control of summer fallow weeds to reduce transpiration. Despite the widespread adoption of no-till farming systems in the region, few published studies have considered the benefits of residue management during the summer fallow relative to weed control, and none quantify the impacts or identify the mechanisms by which summer fallow weeds influence subsequent crop yield. Over 3 years (2009–11), identical experiments on adjacent sand and clay soil types at Hopetoun in the southern Mallee were conducted to quantify the effect of residue management (standing, removed, or slashed) and summer fallow weed control (± chemical control) compared with cultivation on soil water and nitrogen (N) accumulation and subsequent crop yield. The presence of residue (2.4–5.8 t/ha) had no effect on soil water accumulation and a small negative effect on grain yield on the clay soil in 2011. Controlling summer weeds (Heliotropium europaeum and volunteer crop species) increased soil water accumulation (mean 45 mm) and mineral N (mean 45 kg/ha) before sowing on both soil types in 2 years of the experiment with significant amounts of summer fallow rain (2010 and 2011). Control of summer weeds increased grain yield of canola by 0.6 t/ha in 2010 and wheat by 1.4 t/ha in 2011. Using the data from these experiments to parameterise the APSIM model, simulation of selected treatments using historical climate data (1958–2011) showed that an extra 40 mm of stored soil water resulted in an average additional 0.4 t/ha yield, most of which was achieved in dry growing seasons. An additional 40 kg/ha N increased yield only in wetter growing seasons (mean 0.4 t/ha on both soil types). The combination of extra water and N that was found experimentally to result from control of summer fallow weeds increased subsequent crop yield in all season types (mean 0.7 t/ha on sand, 0.9 t/ha on clay). The co-limitation of yield by water and N in the Mallee environment means that yield increases due to summer weed control (and thus returns on investment) are very reliable.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3