Monte Carlo-based ensemble method for prediction of grassland fire spread

Author:

Cruz Miguel G.

Abstract

The operational prediction of fire spread to support fire management operations relies on a deterministic approach where a single ‘best-guess’ forecast is produced from the best estimate of the environmental conditions driving the fire. Although fire can be considered a phenomenon of low predictability and the estimation of input conditions for fire behaviour models is fraught with uncertainty, no error component is associated with these forecasts. At best, users will derive an uncertainty bound to the model outputs based on their own personal experience. A simple ensemble method that considers the uncertainty in the estimation of model input values and Monte Carlo sampling was applied with a grassland fire-spread model to produce a probability density function of rate of spread. This probability density function was then used to describe the uncertainty in the fire behaviour prediction and to produce probability-based outputs. The method was applied to a grassland wildfire case study dataset. The ensemble method did not improve the general statistics describing model fit but provided complementary information describing the uncertainty associated with the predictions and a probabilistic output for the occurrence of threshold levels of fire behaviour.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework for Conducting and Communicating Probabilistic Wildland Fire Forecasts;Fire;2024-07-01

2. Incorporating Stochastic Wind Vectors in Wildfire Spread Prediction;Atmosphere;2023-10-27

3. The Portuguese Large Wildfire Spread database (PT-FireSprd);Earth System Science Data;2023-08-23

4. Atmospheric oxygen concentration: significant factor neglected in fire models;2022-11-22

5. Forest Fire Prediction for NASA Satellite Dataset Using Machine Learning;2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3