A Straightforward Methodology for the Synthesis of α,ω-Telechelic Poly(dimethylsiloxane)s

Author:

Lencina María M. Soledad,Redondo Franco L.,Müller Camila,Hanazumi Vivina,Vitale Cristian,Ninago Mario D.,Vega Daniel A.,Villar Marcelo A.,Ciolino Andrés E.

Abstract

In this work we report the synthesis of α,ω-telechelic poly(dimethylsiloxane)s (α,ω-PDMS) by employing a novel bifunctional initiator obtained from a commercially available siloxane precursor, diglycidylether-terminated poly(dimethylsiloxane) (PDMS-DGE). The synthetic strategy was easily followed by different colour changes, and involved the high-vacuum reaction of sec-Bu−Li+ with 1,1′-diphenylethylene (DPE) to afford the addition adduct (bright red) that was subsequently reacted with PDMS-DGE, promoting the nuclephilic ring-opening from epoxide-end chains. The resulting bifunctional initiator (light green) was then employed to polymerize hexamethyl(cyclotrisiloxane) monomer (D3) by using conventional anionic polymerization (from light green to pale yellow). From suitable terminating agents, silane (–SiH), vinyl (–CH=CH2), hydroxy (–OH), and even methacryloyl α,ω-PDMS were obtained. 1H NMR and FT-IR analyses confirmed the presence of the targeted functional groups in the resulting polymers. However, a careful siliconization procedure should be performed over glass surfaces during the fractionation of chlorosilane ampoules in order to avoid the presence of silanol moieties that decrease end-capping efficiency. This fact was observed not only from NMR but also from size exclusion chromatography (SEC) analyses, since narrow molar masses distributions (1.15 ≤ Mw/Mn ≤ 1.3) and a good control over the resulting molar masses were observed.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3