Microbiological indicators as sensitive indicators in the assessment of areas contaminated by heavy metals

Author:

Melloni Eliane Guimarães PereiraORCID,Melloni RogérioORCID,Pastor-Jáuregui RocíoORCID,Aguilar-Garrido AntonioORCID,Martín-Peinado Francisco JoséORCID

Abstract

Context As one of the world’s largest mining spills, the Aznalcóllar pyrite mine accident in Spain in 1998 resulted in ~45 km2 of agricultural soils polluted by arsenic and heavy metals. The Guadiamar Green Corridor (GGC) helped with soil remediation but residual pollution is still detected 20 years later. Aims Several methodologies based on chemical indicators have been used to assess the recovery of these areas. However, simple microbiological indicators (e.g. microbial activity and biomass, and metabolic quotient (qCO2)) are yet to be uesed. The aim of this study was to evaluate areas contaminated by arsenic and heavy metals using microbiological indicators of soil quality. Methods We used a systematic random sampling design to collect soil samples from two soil groups with different recovery trajectories. We analysed the total and water-soluble concentrations of arsenic (As), lead (Pb), copper (Cu), and zinc (Zn), the main soil properties, and bioassays including microbial activity and biomass, and metabolic quotient or microbial stress (qCO2). Key results Twenty years after the accident, soils with As and Pb concentrations that consistently exceeded regulatory levels had altered soil microbial biomass and functioning. Although overall rates of microbial respiration were not significantly different between polluted soils, microbial biomass was lower and qCO2 was higher in the more polluted than in less polluted soils. Conclusions The metabolic quotient and microbial biomass are sensitive indicators in the monitoring over time of soil polluted by arsenic and heavy metals. Implications Microbial indicators must be considered in the assessment of potential ecotoxicity and in the evaluation of soil biological properties influencing soil recovery in the long term.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3