Current and future direction of nitrogen fertiliser use in Australian grazing systems

Author:

Rawnsley R. P.ORCID,Smith A. P.,Christie K. M.,Harrison M. T.,Eckard R. J.ORCID

Abstract

The nitrogen (N) nutrition of dairy pasture systems in southern Australia has changed from almost total dependence on legumes in the early 1990s through to almost complete reliance on N fertiliser today. Although some tactical N fertiliser is applied to sheep and beef pastures to boost late winter growth, most N fertiliser usage on pastures remains with the dairy industry. Intensification of the farming system, through increased stocking rates and a greater reliance on N fertiliser, has increased N loading, leading to higher potential N losses through volatilisation, leaching and denitrification. With increasing focus on the environmental impact of livestock production, reducing N loading on dairy farms will become increasingly important to the longer-term sustainability of the dairy industry, possibly with the expectation that Australia will join most of the developed countries in regulating N loading in catchments. This paper examines N usage in modern pasture-based dairy systems, the N cycle and loss pathways, and summarises a series of recent modelling studies and component research, investigating options for improving N use efficiency (NUE) and reducing whole-farm N balance. These studies demonstrate that the application of revised practices has the potential to improve NUE, with increasing sophistication of precision technologies playing an important role. This paper discusses the challenge of sustainably intensifying grazing systems with regard to N loading and what approaches exist now or have the potential to decouple the link between production, fertiliser use and environmental impact.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3