Carnitine-mediated antioxidant enzyme activity and Bcl2 expression involves peroxisome proliferator-activated receptor-γ coactivator-1α in mouse testis

Author:

Roy Vikas Kumar,Verma Rachna,Krishna Amitabh

Abstract

The protective effects of carnitine have been attributed to inhibition of apoptosis, alleviating oxidative stress and DNA repair mechanism by decreasing oxidative radicles. Carnitine also increases mitochondrial biogenesis via peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). The role of carnitine in testicular PGC1α expression has not been documented. We hypothesised that the effects of carnitine as an antioxidant, inhibitor of apoptosis and controller of steroidogenesis in mouse testis may involve PGC1α as a regulator. The present study was designed to evaluate the localisation of PGC1α and the effects of carnitine treatment on the expression of PGC1α, Bcl2 and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) in mouse testis and serum testosterone concentrations. PGC1α was primarily immunolocalised to the Leydig cells and primary spermatocytes. Western blot analysis showed that carnitine (50 mg kg–1 and 100 mg kg–1 for 7 days) significantly increased PGC1α and Bcl2 expression in the testis in a dose-dependent manner. In addition, carnitine treatment significantly increased antioxidant enzyme (CAT, SOD and GPx) levels. The carnitine-induced changes in PGC1α in the testis were significantly correlated with changes in serum testosterone concentrations, as well as with changes in Bcl2 expression and antioxidant enzyme activity in the testis, as evaluated by electrophoresis. Therefore, the results of the present study suggest that carnitine treatment of mice increases PGC1α levels in the testis, which may, in turn, regulate steroidogenesis by increasing expression of Bcl2 and antioxidant enzymes.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3