Seven days ex vivo perfusion of whole ewe ovaries with follicular maturation and oocyte retrieval: towards the development of an alternative fertility preservation method

Author:

Tsiartas Panagiotis,Mateoiu Claudia,Deshmukh Meghshree,Banerjee Debashish,Padma Arvind M.,Milenkovic Milan,Gandolfi Fulvio,Hellström Mats,Patrizio Pasquale,Akouri RandaORCID

Abstract

Fertility preservation methods for prepubertal women about to undergo gonadotoxic chemo and/or radiation therapy are limited. Therefore, the aim of this study was to investigate the feasibility to develop an alternative fertility preservation method based on an ex vivo perfusion platform for whole ewe ovaries. Thirteen ewe ovaries were divided into two groups (group 1 and 2) that were perfused in a bioreactor for up to 7 days. Group 1 (n = 3) were stimulated with human menopausal gonadotropin (hMG) administered in single daily dose, while group 2 (n = 10) were stimulated continuously for 24 h. The perfused ovaries in group 1 showed no significant differences in follicular density, sub-follicular morphology and oocyte quality after ischaemia and after ex vivo perfusion compared with non-perfused control ovaries. The perfused ovaries in group 2 showed a significant decrease in the follicular reserve and oocyte quality compared with the control group. In total, 16 GV–MI oocytes were retrieved from both groups. This study describes for the first time the ex vivo maintenance of viable follicles of ewe ovaries with oocyte integrity and the retrieval of oocytes after ex vivo hormonal perfusion with two different protocols for up to 7 days.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Normothermic Machine Perfusion Systems: Where Do We Go From Here?;Transplantation;2023-12-13

2. Fertility Preservation;Clinical Reproductive Medicine and Surgery;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3