Leaf shape influences spatial variation in photosynthetic function in Lomatia tinctoria

Author:

Leigh Andrea,Hill Ross,Ball Marilyn C.

Abstract

A relationship exists between the two-dimensional shape of leaves and their venation architecture, such that broad or broad-lobed leaves can have leaf tissue far from major veins, potentially creating stronger gradients in water potential – and associated photosynthetic function – than found across narrow counterparts. We examined the spatial patterns of photosynthetic efficiency (ΔF/Fm′) and non-photochemical quenching (NPQ) in response to increased vapour pressure deficit (VPD) using two morphs of Lomatia tinctoria (Labill.) R.Br: those with broad-lobed and those with narrow-lobed leaves. Stomatal conductance (gs), instantaneous water use efficiency (WUE), stomatal and minor veins density also were measured. ΔF/Fm′ decreased with stress but was higher and less spatially heterogeneous across broad than narrow lobes. The strongest depression in ΔF/Fm′ in broad lobes was at the edges and in narrow lobes, the tips. Non-photochemical quenching was spatially more varied in broad lobes, increasing at the edges and tips. Variation in photosynthetic function could not be explained by gs, WUE or minor vein density, whereas proximity to major veins appeared to mitigate water stress at the tips only for broad lobes. Our findings indicate that the relationship between venation architecture and water delivery alone can partially explain the spatial pattern of photosynthetic function.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3