Nitrogen requirements for maximum growth and photosynthesis of rice, Oryza sativa L. cv. Jarrah grown at 36 And 70 Pa CO2

Author:

Aben Silvestre K.,Seneweera Saman P.,Ghannoum Oula,Conroy Jann P.

Abstract

The hypothesis that growth of rice (Oryza sativa L. cv. Jarrah) at elevated atmospheric CO2 partial pressure alters leaf nitrogen (N) concentrations required to support maximum dry mass production and photosynthetic rates during the period of rapid tiller initiation was tested by growing plants for 30 days in unstirred sand/hydroponic culture with N concentrations of 5, 20, 40, 60 and 100 mg N L–1. Maximum growth and photosynthetic potential was greater at 70 than 36 Pa CO2 at all N concentrations in the solution. Elevated CO2 reduced leaf N concentrations required to support 90% of maximum growth and photosynthetic rates (critical concentration) from 40 to 27 g kg–1 for growth and from 45 to 30 g kg–1 for photosynthesis. Morphological changes at elevated CO2 included increased tiller numbers and reduced leaf area ratio. The latter could be explained by lower plant N concentrations which occurred at high CO2 at each N concentration in the solution, primarily due to lower leaf blade and root N concentrations. Changes in tiller numbers at high CO2 were unrelated to leaf or plant N but were strongly correlated with leaf soluble carbohydrate concentrations. We conclude that elevated CO2 alters the nutritional physiology of rice during the rapid tillering phase in a way that increases the efficiency of N utilisation for growth and photosynthesis.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3