Predicted salinity impacts from land use change: comparison between rapid assessment approaches and a detailed modelling framework

Author:

Beverly C.,Bari M.,Christy B.,Hocking M.,Smettem K.

Abstract

This paper illustrates the hydrological limitations and underlying assumptions of 4 catchment modelling approaches representing different generic classes of predictive models. These models are commonly used to estimate the impacts of land use and management change on stream flow and salinity regimes within a target region. Three approaches are based on a simple conceptual framework that assumes a single layer groundwater aquifer and requires minimal information and calibration (Zhang-BC2C, CAT1D-BC2C and LUCICAT), whereas the fourth approach (CAT3D) adopts a fully distributed highly parameterised catchment model capable of simulating complex multi-layered groundwater aquifer systems. All models were applied to the Gardiner subcatchment within the Goulburn–Broken region of Victoria, identified as a National Action Plan for Salinity priority subcatchment. Current condition simulation results were compared with observed stream flow and groundwater hydrograph data. Results show that the simple frameworks predicted whole-of-catchment mean annual salt and water yield with minimum parameterisation. The fully distributed framework produced similar catchment-scale responses to the simple approaches, but required more intensive input data and solution times. However, the fully distributed framework provides finer temporal and spatial scale information within the catchment. The more detailed models (such as CAT3D) also have the predictive capacity to assess the within-catchment dynamics at a range of scales and account for landscape position and complex surface/groundwater interactions. This paper concludes that the simple frameworks are useful for judging the whole-of-catchment impacts of broad-scale land use change on catchment water yields and salinity and therefore provide valuable tools for community engagement. However, the within-catchment dynamics are not well represented and particular care must be taken when applying such models in those catchments where the interaction between groundwater and surface features result in saturated areas that are disconnected from streams. Adoption of a distributed groundwater modelling environment similar to that of CAT3D provides higher spatial resolution relative to the lumped broad scale groundwater glow system (GFS) based parameterisation adopted by the BC2C rapid assessment approaches. The developers of the BC2C model acknowledge that such models are currently limited to upland local and intermediate groundwater flow systems. Given that the majority of land salinisation is located in regions dominated by intermediate and regional groundwater systems, this tool is not well suited to adequately model regional processes. In contrast, the CAT3D distributed groundwater models are likely to be applicable across a range of scales and provide the capacity to assess the trade offs between salinity recharge and discharge intervention strategies. We conclude that more complex models (e.g. CAT3D) are needed to identify at the land management scale (paddock/farm) cost effective land use and land management changes within the catchment to improve catchment health.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3