A quantitative method for evaluating ecological risks associated with long-term degradation of deep-sea plastic-containing infrastructure

Author:

Testoff Alexander N.,Nelson Nicholas A.,Nicolette Joseph P.

Abstract

Presented herein is a newly developed quantitative approach for assessing potential ecological risk resulting from long-term degradation of deep-sea plastic-containing infrastructure. The risk characterisation involves four iterations of modelled ‘risk’ through forward or backward calculation of a deterministic hazard quotient, mathematically defined as the ratio of estimated exposure to a reference dose (or concentration) for a similar exposure period. The assessment focuses on direct effects of microplastics exposure, wherein exposure concentrations are based on modelled estimates of microplastic mass formation resulting from structure deterioration over time. Predicted no effect concentrations (PNECs) protective of slightly-to-moderately disturbed ecosystems and ecosystems of high conservation value were determined based on a species sensitivity distribution (SSD), in accordance with the current Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Each iteration of risk characterisation is performed irrespective of burial, with varying exposure unit dimensions (i.e. geographically localised and broader regions of microplastic dispersal) and degrees of plastic degradation, designed to conservatively bound the risk characterisation. Additionally, two SSDs derived from different ecotoxicological data sets prioritising either particle shape or marine species are also provided for a sensitivity analysis of the PNEC. Thus, the bounding exercise encompasses all possible outcomes. The risk characterisation approach is reviewed for a case study of two larger plastic-containing flowline assets in an oil production field offshore of Australia. The outcome of the risk assessment is the same for all model iterations: degradation of the subsea plastic-containing flowlines does not pose a risk to the local marine community.

Publisher

CSIRO Publishing

Reference83 articles.

1. Advisian (2020) ‘Offshore Oil and Gas Decommissioning Liability (Australia): Executive Summary.’ (NERA: Australia)

2. Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products.;International Journal of Green Energy,2014

3. The influence of biotic and abiotic environments on the degradation of polyethylene.;Progress in Polymer Science,1990

4. Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea.;Environmental Pollution,2017

5. ANZG (2018) ‘Australian and New Zealand guidelines for fresh and marine water quality.’ (Australian and New Zealand Governments and Australian State and Territory Governments: Canberra ACT, Australia)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3