Availability of phosphorus and nitrogen from modified mono-ammonium phosphate (MAP) fertiliser compounds

Author:

McLachlan Jonathan W.ORCID,English Peter W.,Flavel Richard J.,Guppy Chris N.

Abstract

Moderating nutrient release to match plant requirements more closely can improve nutrient use efficiency. The formation of lower-solubility ammonium salts may be a simple and cost-effective way to slow the release of nitrogen (N) from fertiliser sources. Several modified mono-ammonium phosphate (MAP) fertiliser compounds were prepared by adding magnesium silicate to regular MAP fertiliser and reconstituting the granules. This process results in the formation of schertelite that may potentially slow the release of both N and phosphate to soil solution. These modified MAP fertiliser compounds include more citrate-soluble N and phosphorus (P) than standard MAP fertiliser. The fertiliser compounds were added to a P-responsive soil and barley plants were grown for 5 weeks to investigate shoot yield responses to nutrient availability of the modified MAP fertiliser compounds. Reverse dilution tracing techniques were also used to compare the fertiliser solubility and P availability of the modified MAP fertiliser compounds with regular MAP fertiliser. Barley (Hordeum vulgare) plants recovered P equally and efficiently over 5 weeks of growth in the P-responsive soil, suggesting that the fertiliser compounds were sufficiently soluble to meet plant requirements and that phosphate release was not slowed by the formation of schertelite. However, shoot yields were generally lower when the barley plants were grown with the modified MAP fertiliser compounds compared to standard MAP fertiliser. This reduced growth was likely due to decreased N availability through a slower release of N, thus further research is warranted to determine the potential for these products to improve N use efficiency.

Publisher

CSIRO Publishing

Reference11 articles.

1. Soil phosphorus buffering measures should not be adjusted for current phosphorus fertility.;Australian Journal of Soil Research,2008

2. The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis.;Australian Journal of Experimental Agriculture,1963

3. Coombes NE (2006) DiGGer, a design generator. Available at

4. Crawley MJ (2013) ‘The R Book.’ (John Wiley & Sons Ltd: Chichester, UK)

5. Isbell RF (1996) ‘The Australian Soil Classification.’ (CSIRO Publishing: Melbourne, Australia)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3