Slow movement of alkali from surface-applied lime warrants the introduction of strategic tillage for rapid amelioration of subsurface acidity in south-western Australia

Author:

Azam G.ORCID,Gazey C.

Abstract

Conventional surface-application of agricultural lime takes many years to increase pH deeper in the soil profile, which is a barrier to increased adoption of liming. We conducted a series of experiments to measure the rate of vertical movement of alkali and identify the factors that determine this movement into the subsurface, to evaluate the feasibility of ameliorating acidic subsurface soil using residual (undissolved) lime (CaCO3) at Wongan Hills (30.85°S, 116.74°E) and Merredin (31.48°S, 118.21°E) and to test whether deep tillage and lime incorporation can significantly speed up the amelioration of subsurface soil acidity at Kalannie (30.42°S, 117.29°E). Multiple applications of lime to the surface of the soil at higher rates (total 6–8.5 Mg ha–1) significantly increased subsurface soil pH but only in the 0.10–0.20 m depth by 0.049 pH units per year over 10–24 years. A large proportion of the surface-applied lime was stratified in the top few centimetres of the soil and incorporation of this undissolved lime with a rotary hoe to a depth of 0.25 m significantly increased soil pH (by 0.63 units) within a year in the Wongan Hills field experiment. Deep incorporation of 6 Mg ha–1 lime to a depth of 0.45 m through excavation and spading with a small rotary hoe also increased soil pH by more than a unit and decreased Al concentration to below the toxic level within two months in the Kalannie experiment, allowing wheat (Triticum aestivum L.) plants to produce root systems up to 0.59 m deep compared with 0.26 m for the control. Our soil column leaching experiment indicated that surface incorporation of lime in higher rainfall regions can be useful to treat subsurface soil acidity but that the rate of improvement in subsurface pH was slow. Therefore, deeper incorporation of lime using cost-effective strategic deep tillage is likely to be necessary.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3