Trace metal cycling in the Whau Estuary, Auckland, New Zealand

Author:

Ellwood Michael J.,Wilson Peter,Vopel Kay,Green Malcolm

Abstract

Environmental context. The accumulation of trace metals from urban runoff is a serious environmental concern. In the present paper we show that, in the case of the Whau Estuary, Auckland, New Zealand, there is a significant particulate Zn input, of which a significant amount of Zn is lost from the particulate phase into the dissolved phase within the water column, and via molecular diffusion across the water–sediment interface. The present study shows that changes in the chemical speciation of Zn, associated with changes in salinity, play a major role in regulating the recycling of this metal between the particulate and dissolved phases. Abstract. Dissolved Zn, Cd, Cu, Fe, and Pb concentrations were measured along a salinity gradient in the Whau Estuary, Auckland, New Zealand. We found a mid-salinity maximum in dissolved Zn and Cd concentrations, consistent with significant loss of these metals from the particulate phase into the dissolved phase. Changes in the chemical speciation of these two metals were coupled to changes in salinity and this was the major driver for Zn and Cd loss from particulate material. Contrastingly, Cu concentrations were conservative with salinity, whereas there was significant scavenging of Fe and Pb from the dissolved phase into the particulate phase. Analysis of sediment pore-water metal concentrations indicated a peak in Zn concentration within the suboxic layer. The peak occurred at a shallower depth than those for Mn and Fe. The concentration gradient across the sediment–water interface suggests that diffusional loss of Zn from the sediment pore water into the overlying water column was occurring. Conversely, the diffusion of Cu from the water column into the sediment pore water was likely to occur because pore-water Cu concentrations were lower than the overlying water column concentrations. The results from the present study show the importance of chemical speciation and the lability of metals attached to particulate material as potentially being a critical determinant on sediment metal concentrations.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3