Lower Hybrid Drive in Solar Magnetic Reconnection Regions: Implications for Electron Acceleration and Solar Heating

Author:

Cairns Iver H.

Abstract

AbstractLower hybrid (LH) drive involves the resonant acceleration of electrons parallel to the magnetic field by lower hybrid waves, often driven by ions with ring or ring-beam distributions. Charge-exchange between hydrogen atoms and protons with relative motions perpendicular to the magnetic field leads to ring distributions of pickup ions, with concomitant perpedicular ion ‘heating’. This paper considers the combination of LH drive and charge-exchange in the outflow regions of magnetic reconnection sites in the solar chromosphere and lower corona, showing that the combined mechanism naturally predicts major perpendicular ion heating and parallel electron acceleration, and exploring the mechanism’s relevance to specific solar reconnection phenomena, heating of the solar atmosphere, and production of energetic electrons that generate solar radio emission. Although primarily qualitative, analysis shows that the mechanism has numerous attractive aspects, including perpendicular ion heating that increases linearly with ion mass, parallel electron acceleration, predicted ion and electron temperatures that span those of the chromosphere and lower corona, and parallel electron speeds spanning those for type III bursts. Applications to chromospheric explosive events and low-lying active regions, and to heating the chromosphere, appear particularly suitable. Sweeping of plasma frozen-in to chromospheric and coronal magnetic field lines across the neutral atmosphere due to motions of sub-photospheric fields represents an obvious and important generalisation of the mechanism away from reconnection sites. The requirements that the neutrals not be strongly collisionally coupled to the plasma and that sufficient neutrals are available for charge-exchange restricts the LH drive mechanism to above the photosphere but below where the corona is essentially fully ionised. LH drive may thus be important in heating the chromosphere and low corona while other heating mechanisms dominate at higher altitudes. Although attractive thus far, quantitative analyses of LH drive in these contexts are necessary before definitive conclusions are reached.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3