Simulation of fuel bed ignition by wildland firebrands

Author:

Matvienko O. V.,Kasymov D. P.,Filkov A. I.ORCID,Daneyko O. I.,Gorbatov D. A.

Abstract

A 3-D mathematical model of fuel bed (FB) ignition initiated by glowing firebrands originating during wildland fires is proposed. In order to test and verify the model, a series of experiments was conducted to determine the FB ignition time by a single pine bark and twig firebrand (Pinus sylvestris). Irrespective of the pine bark sample sizes and experimental conditions, the ignition of the FB was not observed. Conversely, pine twigs, under certain parameters, ignited the FB in the range of densities (60–105 kg m−3) and with the airflow velocity of ≥2 m s−1. The results of the mathematical modelling have shown that a single pine bark firebrand ≤5 cm long with a temperature of T ≤ 1073 K does not ignite in the flaming mode the FB, and only the thermal energy of larger particles is sufficient for flaming ignition of the adjacent layers of the FB. The analysis of the results has shown that the firebrand length is a major factor in the initiation of ignition. Comparison of the calculated and observed FB ignition times by a single firebrand have shown that our modelling accords well with the experimental results.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3