DFT and SERS Study of Adsorption of 1,4-Dimethoxy-2-nitro-3-methylanthracene-9,10-dione onto Silver Nanoparticles

Author:

Geetha K.,Rekha T. N.,Umadevi M.,Rajkumar Beulah J.M.,Sathe G.V.,Vanelle P.,Terme T.,Khoumeri O.

Abstract

Surface-enhanced Raman scattering (or spectroscopy), commonly known as SERS, has been employed to investigate the adsorption mechanism and orientation of 1,4-dimethoxy-2-nitro-3-methylanthracene-9,10-dione (DMNMAD) molecule onto silver. Silver nanoparticles (Ag NPs) were synthesized based on a solution combustion method using citric acid as a fuel. Scanning electron microscopy and transition electron microscopy studies confirm the crystalline nature and morphology of the synthesized silver nanoparticles. Theoretical normal Raman spectra (nRs) and SERS spectra of the DMNMAD molecule, simulated based on DFT/B3PW91 level of theory were validated experimentally. Experimental and theoretical vibrational modes correlate well, confirming the reliable assignments of the vibrational bands. Enhancement of C=O stretching and C–H in-plane vibrational modes in the SERS spectrum indicates the ‘stand-on’ orientation of the molecule on the silver nanoparticles after adsorption. The frontier molecular orbitals confirm the charge transfers between the molecule and silver nanoparticles following the process of adsorption. As anthraquinone derivatives have been recently used as potent anti-tumour drugs, the adsorption studies reported in the current investigation can pave way to the potential application of DMNMAD in drug delivery.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3