UV-induced emissions of C2 - C5 hydrocarbons from leaf litter

Author:

Derendorp Leonie,Holzinger Rupert,Röckmann Thomas

Abstract

Environmental contextLeaf litter can be found at the Earth’s surface in large quantities, and has the potential to release significant amounts of volatile compounds into the atmosphere where they influence atmospheric chemistry and local air quality. This study investigates the influence of UV radiation on the emission of C2–C5 hydrocarbons from leaf litter. Research on volatile compound emissions from leaf litter is limited, but essential for establishing their global budgets and understanding atmospheric chemistry. AbstractLeaf litter is available at many locations at the Earth’s surface. It has the potential to emit many different types of volatile organic compounds (VOCs) into the atmosphere, which may influence local atmospheric chemistry and air quality. In this study, emissions of several C2–C5 hydrocarbons from leaf litter were measured for different plant species and the influence of ultraviolet (UV) radiation on the emissions was determined. Within the ambient range of UV intensities, the emission rates increased linearly with the intensity of the UV radiation. UVB radiation (280–320 nm) was more efficient in the generation of hydrocarbons from leaf litter than UVA (320–400 nm). In the absence of oxygen, no emissions of C2–C5 hydrocarbons were observed. When leaf litter was placed in humid air, emission rates approximately tripled compared with emissions from leaf litter in dry air. Decay of the emission rates was visible on a timescale of months. A simple upscaling showed that UV-induced hydrocarbon emissions from leaf litter might have a small influence on atmospheric chemistry on the local scale, but do not contribute significantly to their global budgets.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3