Human- and lightning-caused wildland fire ignition clusters in British Columbia, Canada

Author:

Coogan Sean C. P.,Aftergood Olivia,Flannigan Mike D.

Abstract

Wildland fire is a common occurrence in western Canada, with record-setting area burned recorded in British Columbia (BC) in the past decade. Here, we used the unsupervised machine learning algorithm HDBSCAN to identify high-density clusters of both human- and lightning-caused wildfire ignitions in BC using data from 2006 to 2020. We found that human-caused ignition clusters tended to occur around population centres, First Nations communities, roads and valleys, and were more common in the southern half of the province, which is more populated. Lightning-ignition clusters were generally fewer in number and larger in size than human-caused fires for most hyperparameter settings. There were significant differences (X2 = 1884.8, d.f. = 7, P-value <2.2 × 10−16) in fuels associated with lightning- versus human-caused ignition clusters, with human-ignition cluster fires being more often found within leafless aspen (D1) and ponderosas pine and Douglas fir (C7) fuel types. These high-density clusters highlight regions where the greatest densities of both lightning- and human-caused fires have occurred in the province, thereby identifying regions of potential interest to wildland fire managers, researchers and various communities and industries.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Reference53 articles.

1. Road network density correlated with increased lightning fire incidence in the Canadian western boreal forest.;International Journal of Wildland Fire,2009

2. Human-started wildfires expand the fire niche across the United States.;Proceedings of the National Academy of Sciences,2017

3. Relationships between human population density and burned area at continental and global scales.;PLoS One,2013

4. Bonnett N (2020) Climate change adaptations planning at the regional district scale on Vancouver Island, British Columbia. Master’s thesis, University of Alberta, Edmonton, Canada.

5. A critical evaluation of fire suppression effects in the boreal forest of Ontario.;Forest Science,2005

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3