Author:
Lincheneau Christophe,Stomeo Floriana,Comby Steve,Gunnlaugsson Thorfinnur
Abstract
In this short review, we focus on the recent developments within the field of coordination chemistry where mono- or multimetallic supramolecular self-assemblies are formed by employing structurally defined organic ligands, taking advantage of the high coordination requirements of the lanthanides. Such synthesis results in the formation of both structurally complex and beautiful self-assemblies. Moreover, as the lanthanide ions possess both unique magnetic (e.g. GdIII and DyIII) and luminescent properties, either in the visible (EuIII, SmIII and TbIII) or near-infrared regions (YbIII, NdIII, ErIII), these physical features are usually transferred to the self-assemblies themselves, allowing the formation of highly functional structures, such as coordination networks, as well as molecular bundles and helicates. Hence, examples of the use of lanthanide-directed synthesis of luminescent sensors, some of which are formed on solid surfaces such as gold (flat surface or nanoparticles), and imaging agents are presented. Moreover, we demonstrate that by using chiral organic ligands, lanthanide-directed synthesis can also give rise to the formation of enantiomerically pure self-assemblies, the structure of which can be probed using circularly polarized luminescence.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献