Elucidation of the Mechanism for the S - N-type Smiles Rearrangement on Pyridine Rings

Author:

Li Jinghua,Wang Lushan

Abstract

The Smiles rearrangement (SR) is an important strategy for synthesizing heterocyclic compounds. Many pyridine moiety-containing complexes are biologically active. Although the success has been archived in the development of the SR on the pyridine ring to obtain pyridine moiety-containing heterocyclic compounds, not much is known about the detailed SR mechanism. Here, we report a theoretical study on a typical S–N-type SR reaction involved in the synthesis of thiazinone-fused pyridines. We studied both the ipso-SR process and the direct nucleophilic substitution reactions on the ortho-positions to rationalize the experimentally observed ipso-SR product. The calculated results show the ipso-SR consists of two elementary steps, the intramolecular ipso-position substitution and subsequent ring closure, and the barrier for the rate-determining step is 65.98 kJ mol–1 and the overall reaction is exothermic by 116.94 kJ mol–1, confirming the reaction is kinetically feasible and thermodynamically favourable under mild experimental conditions (such as controlled microwave heating). The present results provide a clear picture for understanding the S–N-type SR on the pyridine ring to synthesize pyridine moiety-containing heterocycles.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis of 1-Amino-3-oxo-2,7-naphthyridines via Smiles Rearrangement: A New Approach in the Field of Chemistry of Heterocyclic Compounds;International Journal of Molecular Sciences;2022-05-25

2. Aza-oxindole synthesis via base promoted Truce–Smiles rearrangement;Chemical Communications;2012

3. Nucleophilic Aromatic Substitution;Organic Reaction Mechanisms Series;2011-12-06

4. Molecular Rearrangements: Part 2;Organic Reaction Mechanisms Series;2011-12-06

5. Six-Membered Ring Systems: Pyridines and Benzo Derivatives;Progress in Heterocyclic Chemistry;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3