Author:
Bassu Simona,Giunta Francesco,Motzo Rosella
Abstract
Field studies were conducted on durum wheat to assess the effects of three sowing dates and three cultivars with different flowering times on the stability of the biomass accumulated per unit of solar radiation intercepted that is usually considered constant in crop-simulation models. Aboveground dry matter varied widely, with minimum values ranging from 292 g m–2 at booting to 384 g m–2 at maturity and maximum values ranging from 1452 g m–2 at booting to 2565 g m–2 at maturity. The cumulative intercepted radiation at each phenological stage decreased as sowing was delayed. The leaf area index (LAI) ranged from 1.5 to 7.6 at booting and from 0.1 to 4.6 at the beginning of grain filling across treatments. Sowing dates and cultivars did not differ significantly in extinction coefficient values (0.38 ± 0.015). The estimated radiation use efficiency (eRUE) differed significantly between the two seasons (1.16 ± 0.09 g MJ–1 in 2000 and 1.61 ± 0.08 g MJ–1 in 2001) due to waterlogging in 2000 but did not differ among sowing dates and cultivars within each season. Under optimal growing conditions, eRUE of different cultivars of durum wheat were relatively stable across sowing dates, confirming their reliability for crop modelling in durum wheat as well as in bread wheat. Although eRUE was constant over the whole crop cycle regardless of the sowing date, it was lower at pre-anthesis in the latest sowing, in parallel with the variation in LAI. This study indicates that pre-anthesis eRUE may vary with sowing date under some conditions, depending on the variation in LAI in the period before anthesis.
Subject
Plant Science,Agronomy and Crop Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献