A regional-scale assessment of nutritional-system strategies for abatement of enteric methane from grazing livestock

Author:

Almeida A. K.ORCID,Cowley F. C.ORCID,Hegarty R. S.

Abstract

Progress towards methane (CH4) mitigation for the red meat, milk and wool sectors in Australia and reduced CH4 emissions intensity (g CH4/kg animal product, typically milk or liveweight gain) involves not only reduced net emissions but also improved productive efficiency. Although nutritional additives have potential to reduce CH4 production rate of livestock (g CH4/head.day), systemic improvement of the nutrition of grazing breeding females, the largest source of CH4 emissions in Australian agriculture, will also be required to reduce emissions intensity. Systemic changes that increase productive efficiency for producers are part of the economic and environmental ‘win–win’ of reducing emissions intensity, and so offer good potential for adoption by industry. For sheep and cattle breeding enterprises, improved nutrition to achieve a younger age at first joining and increased reproductive rate will reduce the proportion of CH4-emitting, but unproductive, animals in a herd. However, if breeding stock are managed to be more productive (e.g. by superior nutrition leading to greater product/breeder) and more efficient (e.g. greater product per kilogram DMI) the producer is faced with the following management challenge. Should the enterprise increase stock numbers to utilise surplus feed and gain extra product, or reduce stock numbers to maintain previous product output with smaller enterprise net emissions (and emissions intensity), and so make land available for other uses (e.g. tree plantings, conservation zones). The right balance of incentives and price on carbon is necessary to achieve a result whereby total emissions from Australian agriculture are reduced, and so a positive impact on climate change is achieved.

Funder

NSW Primary Industries Climate Change Research Strategy

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Reference62 articles.

1. ABS (2018) ‘Australian Bureau of Statistics.’ 7121.0 - Agricultural Commodities Australia. (Canberra, ACT, Australia). Available at [Accessed October 2020]

2. AFRC (1990) Agriculture and Food Research Council Technical Committee on responses to nutrients, Report number 5. Nutritive requirements of ruminant animals: energy. Agriculture and Food Research Council.

3. Effects of pasture improvement on productivity, gross margin and methane emissions of a grazing sheep enterprise.;International Congress Series,2006

4. Potential effects of animal management and genetic improvement on enteric methane emissions, emissions intensity and productivity of sheep enterprises at Cowra, Australia.;Animal Feed Science and Technology,2011

5. Can animal genetics and flock management be used to reduce greenhouse gas emissions but also maintain productivity of wool-producing enterprises?;Agricultural Systems,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3